Homogeneity versus Parsimony in Markov Manpower Models: A Hidden Markov Chain Approach
نویسندگان
چکیده
We aim at tackling the problem of inadequate specification a Markov manpower model in this paper, by formulating procedure for validating inclusion or non-inclusion some transition parameters model. The mover-stayer principle and its extensions are employed to incorporate hidden classes achieve more homogeneity is compared with without classes, which parsimonious, using Likelihood ratio statistic, Akaike Information Criterion Bayesian Criterion. illustration shows case data where, up certain level states, important than parsimony.
منابع مشابه
Relative Entropy Rate between a Markov Chain and Its Corresponding Hidden Markov Chain
In this paper we study the relative entropy rate between a homogeneous Markov chain and a hidden Markov chain defined by observing the output of a discrete stochastic channel whose input is the finite state space homogeneous stationary Markov chain. For this purpose, we obtain the relative entropy between two finite subsequences of above mentioned chains with the help of the definition of...
متن کاملMarkov Chain and Hidden Markov Model
Figure 1. Finite state machine for a Markov chain X0 → X1 → X2 → · · · → Xn where the random variables Xi’s take values from I = {S1, S2, S3}. The numbers T (i, j)’s on the arrows are the transition probabilities such that Tij = P (Xt+1 = Sj|Xt = Si). Definition 1.2. We say that (Xn)n≥0 is a Markov chain with initial distribution λ and transition matrix T if (i) X0 has distribution λ; (ii) for ...
متن کاملLogical Hidden Markov Models
Logical hidden Markov models (LOHMMs) upgrade traditional hidden Markov models to deal with sequences of structured symbols in the form of logical atoms, rather than flat characters. This note formally introduces LOHMMs and presents solutions to the three central inference problems for LOHMMs: evaluation, most likely hidden state sequence and parameter estimation. The resulting representation a...
متن کاملScoring hidden Markov models
MOTIVATION Statistical sequence comparison techniques, such as hidden Markov models and generalized profiles, calculate the probability that a sequence was generated by a given model. Log-odds scoring is a means of evaluating this probability by comparing it to a null hypothesis, usually a simpler statistical model intended to represent the universe of sequences as a whole, rather than the grou...
متن کاملConstrained Hidden Markov Models
By thinking of each state in a hidden Markov model as corresponding to some spatial region of a fictitious topology space it is possible to naturally define neighbouring states as those which are connected in that space. The transition matrix can then be constrained to allow transitions only between neighbours; this means that all valid state sequences correspond to connected paths in the topol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Asian Journal of Probability and Statistics
سال: 2022
ISSN: ['2582-0230']
DOI: https://doi.org/10.9734/ajpas/2022/v20i4441